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Introduction

Thompson Sampling (TS) Algorithm

TTTS is an asymptotically optimal algorithm for BAI problems Russo [2020].

TS was originally proposed by Thompson in 1933 [Thompson, 1933] for the
multi-armed bandit (MAB) problem.

TS has been extended to tackle a wide range of variant MAB problems.
Combinatorial bandits [Sankararaman and Slivkins, 2018]
Contextual bandits [Agrawal and Goyal, 2013]
Online problems [Gopalan, Mannor, and Mansour, 2014]
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Formulation

Bayesian Framework

Normal prior distributions:

Posterior distribution:

Π𝑡 =𝒩(𝜇𝑡,10, 𝜎2
𝑡,10) ⊗ …⊗𝒩(𝜇𝑡,1𝑚, 𝜎2

𝑡,1𝑚) ⊗ …
⊗𝒩(𝜇𝑡,𝑘0, 𝜎2

𝑡,𝑘0) ⊗ …⊗𝒩(𝜇𝑡,𝑘𝑚, 𝜎2
𝑡,𝑘𝑚).
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Asymptotic Optimal
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BFAI-TS Algorithm

Process of Extending
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Algorithm Description
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BFAI-TS Algorithm

Algorithm Analysis

Define 𝜙𝑡,𝑖 ≜ ℙ(𝐼𝑡 = 𝑖|ℱ𝑡−1) and ̄𝜙𝑡,𝑖 ≜
∑𝑡

𝑙=2 𝜙𝑙,𝑖
𝑡 .

The probability of pulling arm 𝑖 in round 𝑡:

𝜙𝑡,𝑖 =
𝑐𝑡
𝑘 + (1 − 𝛽)𝑃𝑡,𝑖 ∑

𝑖′≠𝑖
( 𝑃𝑡,𝑖′

1 − 𝑃𝑡,𝑖′
(1 − 𝑐𝑡) +

𝑐𝑡
𝑘 − 1)

+ 𝑃𝑡,𝑖𝛽(1 − 𝑐𝑡),

where 𝑐𝑡 is the probability that samples from all the arms are infeasible in
round 𝑡.

𝑃𝑡,1 → 1, 𝜙𝑡,1 → 𝛽, 𝑐𝑡 → 0

𝑃𝑡,𝑖
1−𝑃𝑡,1

→ 𝜙𝑡,𝑖
1−𝜙𝑡,1

, 𝑖 ≠ 1.
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Theoretical Results

Notations

ℱ the set of feasible arms, i.e., ℱ ≜ {𝑖 ∶ 𝜇𝑖𝑗 ≤ 𝛾𝑗, ∀𝑗 ∈ {1, 2, ...,𝑚}};
𝐼∗ the best feasible arm, i.e., 𝐼∗ ≜ argmax𝑖∈ℱ 𝜇𝑖0;

ℱ𝑤 the set of feasible but suboptimal arms, i.e., ℱ𝑤 ≜ {𝑖 ∶ 𝑖 ∈ ℱ and 𝑖 ≠ 𝐼∗};
ℐ𝑏 the set of infeasible arms with objective performance no worse than 𝐼∗, i.e.,

ℐ𝑏 ≜ {𝑖 ∶ 𝜇𝐼∗0 ≤ 𝜇𝑖0 and ∃𝑗 ∈ {1, 2,… ,𝑚} such that 𝜇𝑖𝑗 > 𝛾𝑗};
ℐ𝑤 the set of infeasible arms with objective performance worse than 𝐼∗, i.e.,

ℐ𝑤 ≜ {𝑖 ∶ 𝜇𝐼∗0 > 𝜇𝑖0 and ∃𝑗 ∈ {1, 2,… ,𝑚} such that 𝜇𝑖𝑗 > 𝛾𝑗};
ℳ𝑖

𝐹 the set of constraints estimated as satisfied by arm 𝑖 in round 𝑡, i.e.
ℳ𝑖

𝐹 ≜ {𝑗 ∶ 𝜇𝑖𝑗 ≤ 𝛾𝑗 for 𝑗 ∈ {1, 2,… ,𝑚}};
ℳ𝑖

𝐼 the set of constraints estimated as violated by arm 𝑖 in round 𝑡, i.e.
ℳ𝑖

𝐼 ≜ {𝑗 ∶ 𝜇𝑖𝑗 > 𝛾𝑗 for 𝑗 ∈ {1, 2,… ,𝑚}}.
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Theoretical Results

Definitions
(𝛼𝛽

2 , ..., 𝛼𝛽
𝑘):

the optimal sampling rates of the remaining 𝑘 − 1 arms, which satisfy the
following optimality condition

𝑘
∑
𝑖=2

𝛼𝛽
𝑖 = 1 − 𝛽, and ℛ𝑖 = ℛ𝑖′ for any 𝑖 ≠ 𝑖′ ≠ 1,

where
ℛ𝑖 = (𝜇𝑖0−𝜇10)2

(𝜎2
𝑖0/𝛼𝛽

𝑖 +𝜎2
10/𝛽)

1{𝑖 ∈ ℱ𝑤 ∪ ℐ𝑤} + 𝛼𝛽
𝑖 ∑
𝑗∈ℳ𝑖

𝐼

(𝜇𝑖𝑗−𝛾𝑗)2
𝜎2
𝑖𝑗

1{𝑖 ∈ ℐ𝑏 ∪ ℐ𝑤}.

Γ𝛽: the optimal sampling rates given 𝛽 ∈ (0, 1), where

Γ𝛽 =min
𝑖≠1

( (𝜇𝑖0 − 𝜇10)2
2(𝜎2

𝑖0/𝛼𝛽
𝑖 + 𝜎2

10/𝛽)
1{𝑖 ∈ ℱ𝑤 ∪ ℐ𝑤}

+ 𝛼𝛽
𝑖 ∑
𝑗∈ℳ𝑖

𝐼

(𝜇𝑖𝑗 − 𝛾𝑗)2
2𝜎2

𝑖𝑗
1{𝑖 ∈ ℐ𝑏 ∪ ℐ𝑤}, min

𝑗∈ℳ1
𝐹
𝛽 (𝜇1𝑗 − 𝛾𝑗)2

2𝜎2
1𝑗

).
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Theoretical Results

Theorem

For the BFAI-TS Algorithm, 𝔼[𝑁 𝜖
𝛽] < ∞ for any 𝜖 > 0, where

𝑁 𝜖
𝛽 ≜ inf{𝑡 ∈ ℕ ∶ |𝜇𝑛,𝑖𝑗 − 𝜇𝑖𝑗| ≤ 𝜖 and |𝑁𝑛,𝑖/𝑛 − 𝛼𝛽

𝑖 | ≤ 𝜖, ∀𝑖 ∈ 𝐴 and 𝑛 ≥ 𝑡}

given 𝛽 ∈ (0, 1). The sample allocations of the algorithm is asymptotically
optimal in the sense that

lim
𝑛→∞

𝑁𝑛,𝑖
𝑛

𝑝
−→ 𝛼𝛽

𝑖 ∀𝑖 ∈ 𝐴,

Le Yang le_yang@nus.edu.sg September 16, 2024 19 / 26



Theoretical Results

Theorem
The following properties hold with probability 1:
1. For any 𝛽 ∈ (0, 1), Γ𝛽 shows the fastest rate of posterior convergence that any
algorithm allocating 𝛽 proportion of the total samples to the best feasible arm can
possibly achieve

lim sup
𝑛→∞

−1
𝑛 log(1 − 𝑃𝑛,1) ≤ Γ𝛽 (1)

and the BFAI-TS Algorithm achieves this rate with

lim
𝑛→∞

−1
𝑛 log(1 − 𝑃𝑛,1) = Γ𝛽. (2)

2. The term Γ𝛽∗ shows the fastest rate of posterior convergence that any BFAI
algorithm can possibly achieve

lim sup
𝑛→∞

−1
𝑛 log(1 − 𝑃𝑛,1) ≤ Γ𝛽∗ (3)

and when the 𝛽 of the BFAI-TS Algorithm is set to 𝛽∗, the algorithm achieves the
optimal rate with

lim
𝑛→∞

−1
𝑛 log(1 − 𝑃𝑛,1) = Γ𝛽∗ . (4)
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Conclusions

Demonstrate the extensibility of the TS algorithm by proposing the BFAI-TS
algorithm.

Solve a significant and common class of constrained optimization problem,
the BFAI problem.

The BFAI-TS algorithm is asymptotically optimal and exhibits impressive
numerical performance.
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